
DIFFERENTIAL MANIFOLDS HW 1

KELLER VANDEBOGERT

1. Exercise 1.7

Define pk := x(k). Then, for 0 ≤ k < n − 1, dpk
dt

= pk+1 and dpn−1

dt
=

F (t, p0, . . . , pn−1).

Define (t, p0, . . . , pn−1) 7→
(
1, p1, . . . , F (t, p0, . . . , pn−1)

)
as the mapping V . Then it is clear by our definitions that if x :=

(t, p0, . . . , pn−1), x satisfies

dx

dt
= V (x)

2. Exercise 1.12

(a). Using (1.26) from the notes, we have:

AdFU(x) = DF (x)(U(x))

So that by definition,

DF (x)(U(x)) = DF (x)(x2)

= lim
t→0

1
x+tx2 − 1

x

t

= lim
t→0

−tx2

(x+ tx2)tx
=
−x2

x2
= −1

(2.1)

Implying that AdFU(x) = −1.
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(b). Now, to compute the Lie bracket, employ (1.27), and also use the

fact that for very small ε, (1 + ε)n ≈ 1 + nε. We have the following:

DV (x)(W (x)) = lim
t→0

(x+ txq)p − xp

t

= lim
t→0

xp(1 + ptxq−1)− xp

t

= lim
t→0

ptxp+q−1

t
= pxp+q−1

(2.2)

And similarly,

DW (x)(V (x)) = lim
t→0

(x+ txp)q − xq

t

= lim
t→0

xq(1 + qtxp−1)− xq

t

= lim
t→0

qtxp+q−1

t
= qxp+q−1

(2.3)

And upon taking the difference, we see that

[V,W ](x) = (p− q)xp+q−1

3. Exercise 1.13

(a). Suppose F : X → Y is a diffeomorphism. Then, y = F (x), and

consider the vector field y 7→ ∂y
∂xi .

Then, dy
dt

= DF (x)(dx
dt

), and ∂y
∂xi = DF (x)(ei). Now, to calculate the

flow, we set these equal. By linearity, we have:

DF (x)(
dx

dt
− ei) = 0

Since x is arbitrary and F is a diffeomorphism, we conclude that

dx
dt
− ei = 0 for all x. But this then implies we have the following flow

for x:
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x(t) = tei + C

Where C is a constant vector. Then, since F (x) = y, we can calculate

the flow at y:

et
∂

∂xi (a) = F (tei + F−1(a))

(b). Using the definition of the Lie Bracket, we have:

[ ∂
∂xi

,
∂

∂xj

]
=

d

ds

d

dt
es

∂

∂xi ◦ et
∂

∂xj ◦ e−s
∂

∂xi (x)

=
d

ds

d

dt
es

∂

∂xi ◦ et
∂

∂xj F (−sei + F−1(x))

=
d

ds

d

dt
es

∂

∂xiF (tej − sei + F−1(x))

=
d

ds

d

dt
F (tej + F−1(x))

= 0

(3.1)

Where the final equality notes that the above no longer depends on

s, so its derivative with respect to s is 0. Hence we see that the above

vector fields commute with respect to the Lie Bracket (this makes sense

formally, since we expect that ∂
∂xi

∂
∂xj = ∂

∂xj
∂
∂xi ).

4. Exercise 1.17

By definition of Lie derivative and pullback operation, we have:

LV ω(v1, . . . , vp) =
d

dt
etV ∗ω(v1, . . . , vp)

∣∣∣
t=0

=
d

dt
ωetV (x)(De

tV (x)(v1), . . . , De
tV (x)(vp))

∣∣∣
t=0

=
d

dt
ωetV (x)(D(etV (x))(v1), . . . , D(etV (x))(vp))

∣∣∣
t=0

(4.1)
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Since the above is multilinear, the derivative follows the Leibniz rule:

d

dt
ωetV (x)(D(etV (x))(v1), . . . , D(etV (x))(vp))

∣∣∣
t=0

=

∂ω

∂x
(V (etV (x))(D(etV (x))(v1), . . . , D(etV (x))(vp))

+ ωetV (x)(D
2(etV (x))(v1)(dx/dt), . . . , D(etV (x))(vp))

∣∣∣
t=0

+ ωetV (x)(D(etV (x))(v1), D
2(etV (x))(v2)(dx/dt), . . . , D(etV (x))(vp))

∣∣∣
t=0

+ . . .

+ ωetV (x)(D(etV (x))(v1), . . . , D
2(etV (x))(vp)(dx/dt))

∣∣∣
t=0

(4.2)

Now set t = 0 in the above, and we note that etV (x) = γx(t), where

γx(0) = x. For each vi this then implies thatD2(etV (x))(dx/dt)(vi)|t=0 =

D(detV dt(x))(vi)|t=0 = DV (x)(vi). Also note that Dx(vi) = Ivi = vi.

With this, we can simplify the above massively once t = 0.

LV ω(v1, . . . , vp) =
∂ω

∂x
(V (x))(v1, . . . , vp)

+ ω(DV (x)(v1), . . . , vp)

+ . . .

+ ω(v1, . . . , DV (x)(vp))

(4.3)

And we are done.

5. Exercise 1.19

(a). We employ E. Cartan’s formula:
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dLV ω = d(diV ω + iV dω)

= d2iV ω + diV dω

= diV dω + iV ddω

= LV dω

(5.1)

Where we’ve used that d2 = 0 twice in the above.

(b). Note that for vector fields U , V , we have that LUV = [U, V ].

Using this and Theorem 8.55 of Lee, we have:

LU(iV ω) = iLUV ω + iVLUω

= i[U,V ]ω + iVLUω
(5.2)

Now, merely subtracting we find that i[U,V ]ω = LU iV ω − iVLUω, as

desired.

(c). Again using Cartan’s magic formula and the result of parts (a)

and (b):

L[U,V ]ω = di[U,V ]ω + i[U,V ]dω

= d(LU iV ω − iVLUω) + LU iV dω − iVLUdω

= LUdiV ω + LU iV dω − (diVLUω + iV dLUω)

= LU(diV ω + iV dω)− (diV + iV d)(LUω)

= LULV ω − LVLUω

(5.3)


