DIFFERENTIAL MANIFOLDS HW 1

KELLER VANDEBOGERT

1. EXERCISE 1.7

Define py, := 2®. Then, for 0 < k <n —1, 2 = p;; and dpgt” =
F(t, po, -+, Pn-1)-

Define (¢, po, ... , Ppn_1) — (1, p1, - ,EF(t, po, .. pn,l))
as the mapping V. Then it is clear by our definitions that if x :=

(t, po, --- , Pn_1), T satisfies

dx
i V(z)
2. EXERCISE 1.12

(a). Using (1.26) from the notes, we have:

AdpU(z) = DF(2)(U(x))

So that by definition,

1 1
1 xtta? T
(2.1) D= A
—t 2 2
= lim T
t=0 (x +ta?)te a2

Implying that AdpU(z) = —1.
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(b). Now, to compute the Lie bracket, employ (1.27), and also use the
fact that for very small €, (14 €)" ~ 1 4 ne. We have the following:

DV (2)(W (2) = lim E TV ="

t—0 t
(2.2) ~ lim aP(1+ ptax?t) — aP
t—0 t
toPta—1
:Pnép xt _pxp+q 1
—

And similarly,

t—0 t
q p—1 q
(2.3) i ® (14 qta?™) —x
t—0 t
+q-1
= lim gtz qaPte!
t—0 t

And upon taking the difference, we see that

[V, W](z) = (p — q)aP*!

3. EXERCISE 1.13

(a). Suppose F': X — Y is a diffeomorphism. Then, y = F(x), and

Oy
ozt

Then, % = DF(z)(£), and % = DF(x)(e;). Now, to calculate the

consider the vector field y —

flow, we set these equal. By linearity, we have:

dr _
dt

Since x is arbitrary and F' is a diffeomorphism, we conclude that

DF(x)( e;) =0

% —e; =0 for all . But this then implies we have the following flow

for x:
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Where C'is a constant vector. Then, since F'(z) = y, we can calculate

the flow at y:

¢'5i (a) = F(te; + F~(a))

(b). Using the definition of the Lie Bracket, we have:

[i i} _ Bt i et (2)
Oxt dzi ] dsdt
- g%esaii o et%F(—Sei + F_l(x))
S
(3.1) _ dii%esaiiF(tej — se; + F'(x))
d d

Where the final equality notes that the above no longer depends on
s, so its derivative with respect to s is 0. Hence we see that the above

vector fields commute with respect to the Lie Bracket (this makes sense

i 0 9 _ 9 0
formally, since we expect that 557 = 5 -).

4. EXERCISE 1.17

By definition of Lie derivative and pullback operation, we have:

(4.1)
Lyw(vy, ..., v) = %etv*a)(vl, e )|
_ %wetv(x)(DetV(x)(vl), s DV @)(w))|
_ %%Wm(p(ew(x))@l), o D (@) @)
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Since the above is multilinear, the derivative follows the Leibniz rule:

(4.2)

o (DI @)wr), . D (@)))] =

W @D @), - D (@)y)
(DX (@) (00) /), DI (@) wp))]
(o (D(E () (00), DHE (@) ) /), . DY (@) ()]
+ ...
(D @), ., D (@) (o) (dr/d))|

Now set ¢ = 0 in the above, and we note that eV (z) = ~,(t), where
7.(0) = z. For each v; this then implies that D?(e! (x))(dz /dt)(v;)|i=0 =
D(detVdt(x))(vi)|s=0 = DV (x)(v;). Also note that Dz(v;) = Tv; = v;.

With this, we can simplify the above massively once ¢t = 0.

Lyw(vy, ..., vp) :g—Z(V(x))(vl, cee, Up)
(43) +wDV(z)(0), - vp)
+ ..
+ w(vy, , DV (z)(vp))

And we are done.

5. EXERCISE 1.19

(a). We employ E. Cartan’s formula:
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dva = d(dsz + ivd&))
= d*iyw + diydw
(5.1)
= diydw + iyddw
= Lvdw

Where we've used that d2 = 0 twice in the above.

(b). Note that for vector fields U, V, we have that LyV = [U,V].
Using this and Theorem 8.55 of Lee, we have:

LU(ivw) = @'LUVw + ivLUW
(5.2)
= Z'[U7v]w + iVLUw

Now, merely subtracting we find that ¢y jw = Lyivw — iy Lyw, as

desired.

(c). Again using Cartan’s magic formula and the result of parts (a)

and (b):

Liyyiw = diyjw + ip,yjdw
= d(Lyiyw — iy Lyw) + Lyiydw — iy Lydw
(5.3) = Lydiyw + Lyiydw — (diy Lyw + iydLyw)
= Ly(diyw + iydw) — (diy + iyd)(Lyw)

= LUL\/(JJ — LvLUw



